Welcome to Eureka Street

back to site

Climate pipe dreams



About 40km from Warrnambool in south-western Victoria is Australia's first demonstration site for storing carbon dioxide pollution deep underground. It doesn't look like much — a few water tanks, sheds and pipes in a paddock — yet plans to meet the internationally agreed climate change target are betting on the success of projects like this.

Injection well at the Otway ProjectThe company behind it, the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), calls it 'the world's largest carbon capture and storage demonstration project', a $100 million project of 'global significance'.

CO2CRC was established more than a decade ago with federal funds, and the current chairman is former federal Minister for Resources and Energy Martin Ferguson. It researches carbon capture and storage (CCS) techniques to capture the pollution from power stations and sequester it deep beneath the earth so it won't overheat the planet.

For decades, environment groups maligned CCS as little more than an excuse for the fossil fuel industry to keep burning coal and gas. It was marketed as 'clean coal', but has never fulfilled its promise at commercial scale. Despite this, in recent years, CCS has become an unspoken assumption of the international agreement to limit warming to well below 2 degrees.

'Rather than requiring that nations reduce emissions in the short-to-medium term, the Paris agreement instead rests on the assumption that the world will successfully suck the carbon pollution it produces back from the atmosphere in the longer term,' climate scientist Kevin Anderson, from the Tyndall Centre in the UK, wrote in Nature soon after the 2015 Paris climate change conference. 'A few years ago, these exotic Dr Strangelove options were discussed only as last-ditch contingencies. Now they are Plan A.'

Specifically, much of the scenario modelling relies on something called bioenergy with carbon capture and sequestration (BECCS). It involves growing crops such as corn or switchgrass, which take up carbon dioxide from the atmosphere through the natural process of photosynthesis. They would then be burned in power stations to generate electricity, with the resulting emissions captured and stored underground.

This isn't a fringe strategy anymore. As Anderson writes, it is now a big part of the mainstream, politically preferred approach to address global warming.

In an article for Nature Geoscience, he reviewed the Intergovernmental Panel on Climate Change (IPCC) database of scenarios to meet the 2 degree target and concluded. 'In plain language, the complete set of 400 IPCC scenarios for a 50 per cent or better chance of 2°C assume either an ability to travel back in time or the successful and large-scale uptake of speculative negative emission technologies.'


"The US National Academy of Sciences calls for a 'rapid expansion and scale up' of demonstration projects. Environment groups would be wise to accept that advice."


It's the same story with scenarios to meet the more ambitious 1.5 degree target. 'All of the one and a half degree warming scenarios have assumed some form of carbon capture and storage or bioenergy with carbon capture and storage,' explains climate scientist David Karoly from the University of Melbourne.

Even key figures intimately involved with the UN climate change negotiations are critical of these assumptions. In a 2016 conference at Oxford University, Janos Pasztor, Senior Advisor to the UN Secretary-General on Climate Change, expressed his doubts: 'Sometimes I wonder if BECCS is just a fudge factor to make our models reach 1.5°C or 2°C, or whether it's a real prospect.'

Pasztor is now heading an initiative that's investigating the international governance of geoengineering — a catch-all term for technological solutions to global warming. It's yet another indication that, at least among the political and scientific elite, the debate is shifting beyond merely cutting emissions to a 'portfolio' of strategies, including geoengineering.

Why are we even contemplating such speculative solutions to global warming? There are a few theories. Anderson argues it's because what is really needed — deep and early cuts to emissions — is politically unpalatable and 'cannot be reconciled with the mantra of economic growth'. Other climate scientists have called it a 'pay later approach': we assume we'll be able to suck carbon dioxide out of the atmosphere later so we can justify emitting more now.

Then there's the argument that 2 degrees or even 1.5 degrees of warming might not be a safe level, considering we're already seeing devastating coral bleaching, more extreme heatwaves and thawing of the Arctic permafrost. If you take that view, then along with urgently cutting emissions, we'll also need to reduce the total stock of carbon dioxide already in the atmosphere. It's possible to do this by enhancing natural processes — such as replanting forests — but the uptake would be slow, and the storage capacity is limited.

BECCS is favoured because it could store much more carbon, much more quickly. But there's a long list of caveats. A 2015 report by the US National Academy of Sciences explains that bioenergy crops would directly compete with food crops for arable land. Forests might have to be cut down to plant them. While the fossil fuel industry has decades of experience storing carbon dioxide underground (ironically, they use it to force out more oil and gas from depleted reserves), it's at small scales compared with what would be required to make a difference to global temperatures. There are also concerns around leakage and increased risk of earthquakes if injecting carbon dioxide puts too much pressure in the underground reservoir.

For all of these reasons, any form of CCS should be viewed with great skepticism. It is not, and never can be, a substitute for dramatic cuts in greenhouse gas emissions.

But nor can it be dismissed out of hand. Carbon dioxide persists in the atmosphere for centuries or millennia; it's almost certain we'll need to draw down some of it over that timescale, and while CCS is still a nascent technology, it's more advanced than some other techniques to do the same job. The US National Academy of Sciences calls for a 'rapid expansion and scale up' of demonstration projects. Environment groups would be wise to accept that advice.

It seems crazy that we're gambling our future on pollution-sucking gadgets we haven't built yet and that might not work at scale. But that's the reality of where decades of political dithering and delay on climate change have brought us: to a paddock in south-western Victoria, pinning our hopes on a couple of pipes in the ground.


Greg Foyster headshotGreg Foyster is a Melbourne writer and the author of the book Changing Gears.

Topic tags: Greg Foyster, coal, renewable energy, climate change



submit a comment

Existing comments

Good article. Just to say, Pumping carbon dioxide into the ground is not new. We've had the technology for decades. What's lacking, is political will, to make polluters use it.

Mike Brisco | 03 April 2017  

Whatever the likelihood of success in pulling carbon dioxide out of the atmosphere, the major ethical fault with the approach outlined by Greg is the inclusion of biofuels as part of the solution. When two thirds of the world's population goes to bed hungry each night, despite widespread distribution of grain, fruit and vegetables, any plan to re-direct food crops to energy production is unethical in the extreme. As Greg stated, "A 2015 report ... explains that bioenergy crops would directly compete with food crops for arable land." The original idea for sequestration of carbon dioxide and other greenhouse gases (GHG) was to reduce emission of GHG from coal- or gas-fired power-stations to the atmosphere; hence the term "clean-coal technology". It is already bad enough that prime agricultural (read: food-producing) land is not safe from coal-seam gas extraction and even coal mining, without going further by turning food-crops (usually grains and sugar cane) into bio-fuel.

Ian Fraser | 03 April 2017  

Carbon Capture and Storage is a pipe dream alright! It;s far too costly! The energy future lies largely in solar, wind and pumped hydro. Sadly our energy problems boil down to major party politicians being bought off by donations from the big polluters. Vote for political parties genuinely striving for a new green economy, not those addicted to fossil fuels and the bribes they receive for promoting it.

Grant Allen | 03 April 2017  

Given the sheer volume of coal which is produced annually (not to mention its totality over just the past century of pollution) and recalling that coal is just the carbon (carbon dioxide is a bigger molecule) it's worth pondering the volume of storage space that would be necessary to accommodate the resultant waste. Add to that the volume of oil which is burned each year. Then the scale (some say the utter lack of reality) of a purported "capture-and-store" approach. It seems entirely fanciful to me.

John CARMODY | 03 April 2017  

National and state energy settings have always needed to guarantee that electricity will be affordable, accessible (and equitably so), and reliable. John Monash distilled these givens into the Australian social DNA in the early 1920s, and this may have been the greatest of all his outstanding national contributions. In addition, we now have our duty to the Paris climate accords. But this can all be done with the right balance of "renewable" wind/solar/batteries/hydro, and hydrocarbons (mainly gas in Australia). Our settings need to make all these economically viable over decades, while still welcoming new technologies. What has been spoiling this sensible and pragmatic approach has been over-assertive ideology from the green-left which has de-stabilised these settings; and once the lights go out too often, and energy costs start hurting jobs and families, our enviable common-good consensus will evaporate. Yet again, the ideologues` ideal becomes the enemy of the good.

Eugene | 04 April 2017  

Similar Articles

Racism and renewables in the developing world

  • Ketan Joshi
  • 06 April 2017

A 2015 cartoon by Bill Leak depicts an Indian family squatting, smashing solar panels to pieces. A woman chews on a shattered piece of glass, and a man attempts to smear mango chutney onto glistening shards. The initial reaction centred around the racist depictions of Indians. But it also represents a broader and worrisome attitude towards global energy politics, that assumes idiocy in developing countries, combined with a push to burden them with the dangerous wares of a dying industry.


People power the solar revolution

  • Francine Crimmins
  • 27 March 2017

Earlier this month Tesla launched the Powerwall 2. In the transition to renewable energy, it may be the biggest disruption to hit traditional energy companies yet. In fact, it's probably their worst nightmare. Our role in energy under this innovation has changed from us being consumers to possibly all being providers. Just as Uber disrupted taxis and Airbnb disrupted traditional hotel chains, so too will the Tesla battery change our relationships and transactions with energy.